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Analytical and continuous-time quantum Monte Carlo methods are used to investigate the possibility of
occupation switching and quantum criticality in a model of two quantum impurities coupled to two leads. A
general discussion of potential occupancy-switching-related quantum critical points is given, and a detailed
analysis is made of a specific model which has been recently discussed. For spinless electrons, no phase
transition is found. For electrons with spin, a critical value of the interaction strength separates a weak-
coupling regime in which all properties vary smoothly with parameters from a strong-coupling phase in which
occupation numbers vary discontinuously as level energies are changed. The discontinuity point is character-
ized by non-Fermi-liquid behavior. Results for self-energies and correlation functions are given. Phase dia-
grams are presented.
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I. INTRODUCTION

Quantum impurity models �finite interacting systems
coupled to infinite noninteracting reservoirs� give rise to in-
teresting quantum critical behavior including the
localization-delocalization transition of the macroscopic
quantum tunneling problem,1 the non-Fermi-liquid physics
associated with the underscreened and overscreened multi-
channel Kondo problems,2,3 and the criticality related to the
two-impurity Kondo model.4–6 Recently, a different model
apparently exhibiting quantum criticality was uncovered in
the context of experiments involving a quantum dot inserted
into one arm of an Aharonov-Bohm interferometer.7–9 As a
gate voltage was varied between two Coulomb blockade
peaks, the transmission phase was found to display a sharp
“phase lapse” of −�. It is known that the phase lapse is
associated with zeroes of the transmission amplitude or
conductance,10,11 and that many-body effects can play an im-
portant role in producing phase lapses.12 One possible
mechanism for the vanishing of transmission amplitude and
thus of phase lapses is “population switching” of different
levels on the quantum dot.13–19 This motivates an inquiry
into the possibility of obtaining an abrupt population switch-
ing in models of multilevel dots coupled to leads.

To model the phase lapse system, Golosov and Gefen20

introduced a two-state quantum dot model, which they
solved via mean-field theory in the spinless fermion approxi-
mation. They found population switching which led to phase
lapse behavior similar to that observed experimentally but
raised the question whether the transition survives beyond
the mean-field approximation. Meden and collaborators used
numerical renormalization-group methods to show that it in
fact does not survive.16,21,22 In this paper we use analytical
and numerically exact quantum Monte Carlo �QMC� tech-
niques to go beyond mean-field theory and examine the
switching transition. We find that, in agreement with numeri-
cal renormalization-group studies15,16,21,22 of that in the spin-
less case studied by Ref. 20, quantum fluctuations destroy
the transition, whereas in the case of fermions with spin a
population switching transition can exist at T=0. We present
a brief discussion locating the transition in the general land-

scape of impurity-model quantum phase transitions.
The rest of this paper is organized as follows. Section II

presents the model that we study and a general discussion of
the circumstances under which a quantum phase transition
may take place. Section III outlines an approximate analyti-
cal approach to the problem which follows closely Hamann’s
analysis of the one-impurity Anderson model.23,24 Section IV
presents our numerical results and Sec. V is a summary and
conclusion.

II. MODEL AND METHODS

A. Overview

In this section we present the models to be studied. While
the initial impetus for the research comes from a specific
realization of an interferometer involving a quantum dot,10,11

which implies an impurity model with a specific structure,20

it is useful to present the results in a more general context.
A general quantum impurity model may be written as fol-

lows:

H = Hdot + Hlead + Hmix, �1�

with

Hdot = �
ab

�abda
†db + �

a1a2b1b2

Ua1a2b1b2da1

† da2

† db1
db2

�2�

describing the energetics of electrons in a set of states la-
beled by spin and orbital quantum numbers a ,b,

Hlead = �
�k

�k
�c�k

† c�k, �3�

giving the energetics of electrons in a set of infinite leads
labeled by a momentum �energy� quantum numbers k and an
index � which denotes lead and spin degrees of freedom, and

Hmix = �
k�a

Vk
a�c�k

† da + H.c., �4�

giving the dot-lead hybridization. The effects of Hlead+Hmix
may be encoded in the hybridization function25
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Fab�− i�� = �
k�

Vk
a��Vk

b���

i� − �k
� . �5�

We assume that the lead density of states and hybridization
matrix elements are nonvanishing at the Fermi level where
�k

�=0, so that

Fab�− i�n → 0� → − i�absgn��n� + Eab + O��n

E0
� �6�

with E0 as a fixed energy characteristic of the conduction-
band structure and hybridization. We imagine integrating out
energies on the scale of E0 and higher and absorbing the
resulting finite renormalizations into the parameters of H. We
also incorporate Eab into the dot parameters �ab and choose
the basis which diagonalizes the level broadening matrix �ab.
References 20 and 26 observed that transmission experi-
ments which involve electrons injected and detected in par-
ticular combinations of leads may have phases which depend
crucially on the form of the off-diagonal elements when F is
written in the basis which diagonalizes the input and output
currents, but these effects are not relevant for the consider-
ations of this paper.

We are interested in possible quantum critical behavior
occurring as parameters in H are varied. In all cases known
to us, quantum critical behavior may be traced back to a
crossing of eigenvalues of H as some parameter is varied.
Coupling to the leads may shift the position of the crossing
�because �ab→�ab+Eab� and in addition may either promote
the level crossing to a nontrivial critical point or convert it to
a smooth crossover. For example, a singly occupied dot has a
spin S=1 /2, so that in the presence of a magnetic field one
term in H is h� ·�� with �� as the usual Pauli matrices in spin
space. If h� is held parallel to a fixed direction �say ẑ� and the
magnitude is varied from a positive to a negative value, then
a level crossing occurs. In the generic case in which only one
orbital is relevant and the coupling to the leads is antiferro-
magnetic the Kondo effect converts the level crossing into a
smooth crossover. However, if more than one orbital is rel-
evant or if the Kondo coupling is ferromagnetic a form of
multichannel or ferromagnetic Kondo criticality may
occur.2,3 One consequence of this criticality is a step in the
spin polarization as the field is tuned from a positive value
through zero to a negative value. In a doubly occupied mul-
tiorbital dot, electronic singlet and triplet states are possible
and, as a Hund’s coupling parameter is varied through zero,
the singlet and triplet states may cross in energy. If two chan-
nels of conduction electrons are present, then coupling to the
lattice will in the generic case convert the level crossing to a
crossover, but in some situations the level crossing is shifted
to a positive �antiferromagnetic� value of the Hund’s cou-
pling, so that if appropriate symmetry conditions5,6 are im-
posed the crossing will become the “Jones-Varma” critical
point.4

These examples make it clear that quantum criticality is
associated with the presence of a degeneracy point in the
Hamiltonian of the isolated level and with a dependence of
the state of the system on the direction from which the de-
generacy point is approached. Further, one sees that a high

degree of symmetry must be enforced to obtain level cross-
ing or quantum critical behavior, and that in particular the
possible paths which the system can take through parameter
space must be constrained. For example, in the Kondo ex-
ample, if the field passes from h=h0ẑ to h=−h0ẑ by rotation,
then the level crossing and any multichannel critical behav-
ior are avoided.

B. Specific models

In this paper we consider two specific models. The first,
studied by Golosov and Gefen,20 is a two-level spinless fer-
mion model. Adopting a pseudospin notation for the two
orbitals of the impurity model we may write

Hdot
spinless = 	� · 
� + Un̂1n̂2 �7�

with 
� as the triplet of Pauli matrices acting on the orbital
subspace and 	� as a generalized crystal-field splitting. We
also write for the level broadenings

� = ��11 0

0 �22� . �8�

The model is essentially the Anderson impurity model with a
spin-dependent hybridization. Degeneracy occurs in the one-
electron subspace as the effective crystal-field splitting is
tuned through zero. We will study the model assuming that
the degeneracy point is approached along the direction 	� � ẑ.
For more general directions of 	� our numerical algorithm
encounters a severe sign problem while the analytical theory
becomes notationally much more complicated. However, the
existence or not of a discontinuity as the system is tuned
across the degeneracy point should not depend on how the
point is approached.

We also consider the same model, but for electrons with
spin. A possible Hdot can be written as

Hdot
spin = 	�n̂2,tot − n̂1,tot� + U12n̂1,totn̂2,tot + U11n̂1,tot�n̂1,tot − 1�/2

+ U22n̂2,tot�n̂2,tot − 1�/2 + JexchS�1 · S�2

+ Jpair-hop�0,2�	2,0� , �9�

which now has a richer level structure which depends on the
dot occupancy. �Note that n̂a,tot=��da�

† da�.� In the one- or
three-electron sector there are �counting spin and orbital de-
generacy� four states. In the generic 	� �0 case the orbital
symmetry is lifted while time-reversal symmetry would pro-
tect the spin degeneracy. If only one orbital is relevant one
obtains the usual Kondo effect, but in the special case 	� =0 a
multichannel Kondo state may become possible.3

In the two-electron sector there are the three members of
a spin-1 triplet and three singlet states. In the occupation
number basis we may label the singlet states as �0,2�, �1,1�,
and �2,0�. They are generically nondegenerate. Figure 1
shows possible evolutions of the two-electron levels as the
orbital splitting 	 is varied. A positive Hund’s coupling Jexch
is assumed and two values of the intersite Coulomb interac-
tion U12 are shown. The three triplet states and the �1,1�
singlet state have energy independent of 	. For large �	� the

XIN WANG AND ANDREW J. MILLIS PHYSICAL REVIEW B 81, 045106 �2010�

045106-2



lowest two-electron state is either �0,2� or �2,0�. As �	� de-
creases, the energy of this favored state increases and level
crossings occur.

If the intersite Coulomb interaction is not too large 
dotted
line, double-dotted-dashed line �orange online��, there is a
level crossing either to a triplet state �if Jexch�0, not shown�
or to the �1,1� singlet �Jexch�0, shown�. As noted above, the
coupling to the leads would lead to a Kondo quenching of
the triplet states. A level crossing to this state would in gen-
eral become a smooth crossover, but if particular symmetry
conditions are satisfied a Jones-Varma fixed point would ap-
pear. We shall present arguments below indicating that the
singlet-singlet crossing would become a smooth crossover.

However, if the intersite Coulomb interaction is suffi-
ciently large �short dashed blue line, solid red line� then the
first level crossing will be between the �0,2�- and
�2,0�-derived states. The degeneracy would be lifted by the
“pair-hopping” terms, but in the absence of these terms a
quantum critical point may ensue.

We observe from this analysis that a level crossing, and
hence a quantum critical point, is expected only in the limit
of vanishing pair hopping. Physically, Jexch and Jpair-hop arise
from interorbital exchange interactions. These interactions
are likely to be very small in the quantum dot case envi-
sioned by Ref. 20 where the orbitals correspond to spatially
separated regions of the quantum dot.

C. Methods

We shall be interested in the d electron Green’s function,
defined on the Matsubara axis as

Gab�i�n� = �
0




d
 e−i�n
	T
da�
�db
†�0�� . �10�

Gab can be expressed in terms of the hybridization function
and a self-energy resulting from the interaction term as


Gab�i�n��−1 = i�n�ab − �ab − Fab�− i�n� − �ab�i�n� ,

�11�

and we shall mainly present results for �.

We will also present results for the density-density corre-
lation function W�
� defined as

W�
� = 	T

n̂1,tot�
� − n̂2,tot�
��
n̂1,tot�0� − n̂2,tot�0��� .

�12�

To study the models analytically we follow the techniques of
Hamann,23,24 who wrote the single-impurity Anderson
model27 as a functional integral, decouple the interaction
with auxiliary fields, identify minima, and consider the ac-
tion associated with tunneling paths between minima. This
maps the problem onto a macroscopic quantum-mechanical
model—one-dimensional Coulomb gas28—for which the key
issue is the magnitude of the change in scattering phase shift
between minima.

To study the models numerically we use a continuous-
time QMC technique.25,29 Because we focus on a model
without complicated terms such as intradot hopping and ex-
change interactions, it is efficient to use the segment repre-
sentation discussed in Ref. 29. The method encounters a se-
rious sign problem if an off-diagonal hybridization function
is used, so we employ a basis in which F is diagonal. In its
current implementation the method requires that Hdot also be
diagonal so we choose �ab to be diagonal in the basis which
diagonalizes F. As explained above, this does not affect our
results. Very recent work indicates that the computational
cost of dealing with a nondiagonal Hdot needs not be
prohibitive,30 so that in future work numerical studies of the
case 
� ,F��0 may be feasible.

We adopt a semicircular density of states for the conduc-
tion bands,

���� =

4t2 − �2

2t2 , ��� � 2t , �13�

and choose �k-independent� hybridization parameters Va�


Eq. �5�� so that the level widths are much less than the
bandwidth 4t. The frequency structure of the hybridization
function affects only nonuniversal terms such as the quanti-
tative location of the critical points. We also specialize to the
case U11=U22 to simplify the presentation.

Our calculations were performed on a parallel computer
cluster with 20 dual core 2 GHz nodes; a typical point re-
quires up to about 15 h of computer time on one CPU. The
perturbation orders were typically 0–100, but at the lowest
temperatures orders up to �300 were needed. The QMC
technique is formulated at nonzero temperature: in our work
the lowest accessible temperature is 
t=800 for calculations
of Green’s functions and self-energies and 
t=1600 for a
single point of the correlation function 
Figs. 4�b� and 10�b��.

III. ANALYTICAL RESULTS

The spinless fermion model may be viewed as one-orbital
Anderson model with a spin-dependent hybridization. To
study the model analytically we apply the methods of
Hamann.23,24 Hamann wrote the model as an imaginary time
path integral, re-expressed the interaction term as U

4 
�n1
+n2�2− �n1−n2�2�; decoupled the n1+n2 and n1−n2 interac-
tions with Hubbard-Stratonovich fields x and �, respectively;

0

1

2

-0.5 0 0.5 1 1.5
2∆

E
ne

rg
y

(1,1) triplet U12=1.5
(1,1) singlet U12=1.5

(0,2)/(2,0) +

(0,2)/(2,0) -
(1,1) triplet U12=0.5

(1,1) singlet U12=0.5

FIG. 1. �Color online� Two-electron energies calculated as func-
tions of level splitting parameter 	 from Hdot with U11=1.5, U22

=0.5, Jexch=0.1, Jpair-hop=0.1, and U12=0.5 and 1.5.
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and integrated out the fermions. In the situation considered
by Hamann, the Hubbard-Stratonovich field x which couples
to n1+n2 may be absorbed into the chemical potential and its
fluctuations only provide finite renormalizations. In the situ-
ation of present interest, the field x must be retained. After
decoupling and integrating out the fermions the partition
function becomes

Z = Z0� D�Dx eS���,x�� �14�

with Z0 as the part of the partition function independent of
� ,x and in the pseudospin notation of Eq. �7�,

S = Tr ln
G0
−1 + ��
�
̂z + ix�
�1̂� − �

0




d

��
�2 + x�
�2

U

�15�

with the bare level Green’s function

G0�i�n� = 
�i�n + ��1̂ + 	 · 
̂z + i��̄ 1̂ + �z
̂z�sgn��n��−1

�16�

and �̄ ,�z= 1
2 ��11��22�.

The analysis begins by solving the mean-field equations
�S /��=�S /�x=0 for time-independent � ,x. Defining ix=�,
absorbing a Hartree shift of � into the chemical potential,
and performing the integrals in the wide bandwidth limit we
obtain

2��

U
= arctan

	 + �̄ + � + �

�11 + arctan
	 − �̄ + � − �

�22 ,

�17�

2��

U
= − arctan

	 + �̄ + � + �

�11 + arctan
	 − �̄ + � − �

�22 ,

�18�

with �̄ as the chemical potential shifted by the Hartree term
from �.

For small U there is only one stable solution. For U larger
than a critical value there is a bifurcation and two stable
solutions appear. The minimum U occurs at the particle-hole
symmetric point 	= �̄=0 where the transition is second or-
der. For 	 or �̄�0 the transition shifts to higher U and
becomes discontinuous. At the particle-hole symmetric point
linearizing the equations in � ,� shows that the critical U is

Uc
ph = �
�11�22, �19�

while the eigenvector corresponding to the zero eigenvalue
satisfies

�

�
= −


�22 − 
�11


�22 + 
�11
. �20�

To interpret this result we note that ��+�� gives the shift of
level 1 and ��−�� gives the shift of level 2. If �22��11 then
we see from Eq. �20� that the two mean-field solutions cor-
respond to a larger shift of the broad level and a smaller shift

of the narrow level. However, what is important for the oc-
cupation is the level shift relative to the level width, and we
see that ��+�� /�11� ��−�� /�22 so that the relative change in
occupation of the narrow level is larger. This structure is
found in the solution of the full nonlinear equations: in the
limit of very different level widths the two solutions corre-
spond to states in which the population of the narrow level
changes substantially while that of the broader level shifts
much less, with the total level occupancy differing in the two
stable states. An example is given in Fig. 2. We note, though,
that the important parameter is 
�11 /�22 so an extreme dis-
parity in level widths is needed to produce a large difference
in change in occupation. The two solutions in general have
different energies; for fixed � and U there is 	 �=0 in the
particle-hole symmetric case� at which the energies cross.

Fluctuations of course alter the mean-field predictions. In
the strong-coupling limit we follow Hamann and identify the
most important fluctuations as “kinks” in which the pair � ,�
tunnels from the neighborhood of one mean-field solution to
the neighborhood of the other. Hamann estimated the action
associated with these tunneling events from the solution of a
singular integral equation. The result is an expression for the
partition function as a sum over kinks occurring at times 
m
with a logarithmic interaction between them,

Z

Z0
� �

n=0

�

f2n�
0


 d
2n


0
�

0


2n−
0 d
2n−1


0
¯ �

0


2−
0 d
1


0

�exp�	̄ �
i=1,3,. . .

�
i+1 − 
i� + K�
i�j

�− 1�i+jln� 
i − 
 j


0
��
�21�

with Z0 representing the nontunneling contributions to the
partition function; 
0 being a small cutoff time scale on the
order of the larger of 1 /�11,22; f being a tunneling fugacity of
order ln U
0 determined by the bare parameters in the prob-

lem; 	̄ being the difference of 	 from the critical value at
which the two solutions are degenerate; and, most impor-

0

2

4

6

-1 -0.5 0 0.5 1
ω

A
(ω

)

0

2

4

6

8

ω

A
(ω

)

narrower band

wider band

FIG. 2. �Color online� Electron spectral functions A��� corre-
sponding to Hartree-Fock solutions 
Eqs. �17� and �18�� for param-
eters �11=0.04, �22=0.25, U=0.4, and 	=�=0. The units of � are
defined by the values of �11 and �22.
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tantly, an interaction coefficient K determined by the change
	� in scattering phase shifts between the different solutions,

K = �
channels,a

�	�a

�
�2

� �
a

�	na�2. �22�

The second approximate equality applies in the wide band-
width limit where the phase shift gives directly the level
occupancy. It is known28 that for K�2 the model defined by
Eq. �21� is in its screening phase: tunneling events proliferate
and physical properties vary smoothly as parameters such as

	̄ are varied, whereas for K�2 the model is in the un-
screened or localized phase in which tunneling is suppressed
and there is a discontinuous change as 	 is tuned across the
critical value.

In the spinless case the maximal change in density in
either channel for finite U is �1 so the Hamann analysis
indicates that the model is always in its screening phase and
no phase transition is expected, in contradiction to the results
of Ref. 20. However, if spin is taken into consideration the
number of channels is doubled and K�2 becomes possible.
In the model with spin the various interactions require a mul-
tiplicity of Hubbard-Stratonovich fields.31 Solutions to the
mean-field equations involve nonzero values of the decou-
pling fields corresponding to the dominant interactions, with
the other decoupling fields being unimportant.32 Assuming
that U12 is dominant and neglecting for the moment the pair-
hopping term, we write this contribution to the interaction
term as �U12 /4��n1,tot+n2,tot�2− �U12 /4��n1,tot−n2,tot�2, de-
couple the two terms as before, and obtain an action of the
same form as Eq. �15� except that all of the quantities are
now to be interpreted as 4�4 matrices to include the spin
degeneracy. The analysis proceeds as above except that an
extra factor of 2 multiplies the arctan in Eqs. �17� and �18� as

well as the parameter 	̄ in Eq. �21�. The parameter K, now
approximately �	n1↑�2+ �	n1↓�2+ �	n2↑�2+ �	n2↓�2, may be-
come larger than 2, driving the system into the unscreened
phase.

In our work we choose �11 / t=0.04, �22 / t=0.25, implying
Uc

ph=0.157. . . for the model with spin �at the particle-hole
symmetric point�. Numerically solving the mean-field equa-
tions we find that at U12�0.32 the change 	n1↑�0.85 and
	n2↑�0.53 so that the coupling constant exceeds 2 and we
would expect the model to become localized.

As observed above, the pair-hopping term, by mixing the
two states �0,2� , �2,0�, will destroy the phase transition,
leaving instead a smooth crossover. Finally, we note that the
�1,1�→ �2,0� level crossing �shown for smaller U12 in Fig. 1�
would involve an occupancy change of 1/2 electron per spin,
in one orbital only, so that we would expect the correspond-
ing model to be in its screened phase so that no phase tran-
sition would ensue.

IV. NUMERICAL RESULTS

A. Spinless fermions

Figure 3 shows our numerical results for the d occupancy
as a function of average dot energy in spinless case. We took
the energy of two levels of the dot to be equal, i.e., �11

=�22=�. Level 1 is assumed to be narrower ��11 / t=0.4� and
level 2 broader ��22 / t=0.25�. The Coulomb interaction U / t
=0.4. The solid and dashed-dotted lines present the Hartree-
Fock results for level 1 and 2 occupancies, respectively.
Within the Hartree-Fock approximation there is a first-order
phase transition at �=���0.03t−U /2; as � is tuned through
�� the population of the two levels “switches” abruptly.
However, the QMC results, indicated by lines with points in
Fig. 3, show that at the value of U studied here the phase
transition is an artifact of the Hartree-Fock approximation.
At half-filling point �=−U /2, the only stable solution is
	n1�= 	n2�=1 /2, while the weak temperature dependence
�displayed in an expanded scale in the inset� indicates that
the simulation has accessed the low-temperature limit of the
model.

As further evidence of the absence of a phase transition in
the spinless model we present in Fig. 4 the imaginary time
density-density correlation function 
Eq. �12�� computed at
the particle-hole symmetric point for different interaction
strengths at various temperatures. Figure 4�a� displays the
full imaginary time dependence 
note that W�
�=W�
−
��.
In both the intermediate �U / t=0.4� and the strong �U / t
=1.2� interaction cases the correlation function drops as 
 is
increased from 
=0 and exhibits a minimum at 
=
 /2. The
value W�
=
 /2� has a clear temperature dependence, which
is displayed in more detail in Fig. 4�b�: we see that all curves
extrapolate to zero. For 0�U / t�0.6 our temperature range
is sufficient to resolve clearly the T2 behavior expected from
Fermi-liquid theory; for U / t=0.8,1.2 the temperatures nu-
merically accessible to us are not low enough to establish a
convincing T2 dependence; the extrapolation to zero is evi-
dent.

An analytical expression for the Kondo temperature for
the spinless model has been derived as:16,17,33,34

0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
(ε+U/2)/t

〈n
〉

βt=100, n1βt=100, n2βt=200, n1βt=200, n2βt=400, n1βt=400, n2
HF, n1
HF, n2

0.45

0.5

0 0.005 0.01

(ε+U/2)/t

〈n
〉

FIG. 3. �Color online� Main panel: occupancy of level 1 �solid
curves� and level 2 �dashed curves� of spinless fermion model as
function of mean level energy �=�11=�22 shifted by U /2 obtained
from Hartree-Fock �HF, lines without symbols; black online� and
numerically exact QMC calculations �lines with symbols; red, blue,
and magenta online�. HF is computed at T=0 while QMC is per-
formed at different temperatures as shown in the legends. Inset:
expanded view of energy dependence of dot occupancies in energy
regime close to the particle-hole symmetric point. Parameters:
�11 / t=0.04, �22 / t=0.25, and U / t=0.4.
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TK � 0.2

U��11 + �22�

�
exp� ���U + ��

2U��11 − �22�
ln��11

�22�� ,

�23�

where the prefactor 0.2 has been set by recovering the result
of the Anderson model34 when taking �11=�22. For 0.4
�U / t�1.2 studied in this section the Kondo temperature
varies from TK / t=0.006 for U / t=0.4 to TK / t=0.0006 for
U / t=1.2. Our lowest accessible temperature, T / t=1 /800, is
about twice the TK of the U / t=1.2 case, explaining why the
first stages of the crossover to Fermi-liquid behavior are evi-
dent even in this case.

Finally, we consider the electron self-energy. At the
particle-hole symmetric point the Matsubara-axis self-energy
is purely imaginary and in a Fermi-liquid state would vanish
proportionally to �n as �n→0. To make the analysis more
precise we note that Fermi-liquid theory implies �see, e.g.,

Refs. 35 and 36� that at low frequency and temperature the
real-axis self-energy is approximately

���� = �1 − Z−1�� − i
T0

2
A2��2

T0
2 +

�2T2

T0
2 � �24�

with T0 as a scale on the order of the Kondo temperature,
Z−1�� /T0, and A as a number of the order of unity. This
form implies that at the particle-hole symmetric point

��i�n� = �1 − Z−1�i�n − i
�2

2
A2T2

T0
sgn��n� + ¯ , �25�

where the ellipsis denotes terms of higher order in �n.
Figure 5 presents the imaginary part of the reciprocal of

the Matsubara-axis electron self-energy ��i�n� computed for
several temperatures at two very large U values. The weak
downturn of �11 at �n / t�0.1 is a signature of the crossover
to Fermi-liquid behavior. Surprisingly, a hint of the crossover
to the Fermi-liquid behavior is evident even at temperatures
much higher than the Kondo temperature. For U / t=3, the
Kondo temperature TK / t=2�10−6, so the beginning of the
crossover �upturn in 1 / Im �� can be observed even for T
�5000TK.

B. Fermions with spin

Figure 6�a� shows our numerical results for the d occu-
pancy as a function of average dot energy for fermions with
spin with U11=U22=0, the pair hopping neglected, the level
energies and widths as in the spinless case, and the moderate
interaction U12=0.4t and various temperatures. In contrast to
the spinless case, a clear temperature dependence is evident.
Figure 6�a� inset and Fig. 6�b� show that near the degeneracy
point 	n1−n2��1 /T, so that the dot occupancy exhibits the
approximately Curie-Weiss behavior expected of a two-state
system with no mixing between the states, in sharp contrast
to the spinless case.
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FIG. 4. �Color online� Imaginary time density-density correla-
tion function W 
Eq. �12�� computed at putative quantum critical
point for spinless fermions at parameters indicated. �a� Full imagi-
nary time dependence of W�
� normalized to its 
=0 value, indicat-
ing an obvious temperature dependence for both small and large U.
�b� Correlation function evaluated at midpoint of imaginary time
interval, normalized to value at T=0.01t, indicating T2 dependence
at low T. Parameters are �11 / t=0.04 and �22 / t=0.25.
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At high U12, the QMC calculation takes very long time to
converge, especially at low temperatures. We believe that the
convergence difficulties are related to the strong suppression
of tunneling between the two states. The expense of the cal-
culations means that for the rest of the section we restrict
ourselves to the particle-hole symmetric points �=−U12 and
enforce particle-hole symmetry by averaging G�
� and G�

−
�.

Figure 7 shows the numerical result for the reciprocal of
the imaginary part self-energy of site 1 on the Matsubara
axis. The self-energy of site 2 is very similar and is not
shown. Figure 7�a� is the U12 / t=0.2 result: we see a clear
temperature dependence of the low-frequency self-energy. At
the relatively high temperature 
t=100 �open circles, black
online� the extrapolated zero-frequency limit 
Im ��0� / t�−1

is around −50. As temperature is reduced to 
t=200 �tri-
angles, red online� 
Im ��0� / t�−1�−87. Then at 
t=400
�squares, magenta online� 
Im ��0� / t�−1�−160, and at the

lowest available temperature 
t=800 �diamonds, blue on-
line� 
Im ��0� / t�−1�−300. It is clear that the absolute value
of the intercept at zero frequency increases rapidly as tem-
perature is reduced, consistent with a Fermi-liquid picture in
which the ground state is a coherent combination of �0,2� and
�2,0�.

However, turning to Fig. 7�b� we see that at the relatively
larger interaction strength U12 / t=0.6 a clearly different be-
havior occurs. The large difference in y scales between Figs.
7�a� and 7�b� implies that the self-energy is much larger at
U12=0.6. The traces are approximately linear in frequency
and the zero-frequency intercept is small and temperature
independent. Fitting the low-frequency extrapolation gives

Im ��i�n� / t�−1�−6.4�n−0.28, indicating that the �� i�n
expected in a Fermi liquid does not occur and that either the
ground-state behavior has been accessed or at least that any
Kondo scale is far below the lowest measurement tempera-
ture. The nonvanishing intercept is consistent with the strong
scattering expected if the ground state is an incoherent com-
bination of the two valence states.
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FIG. 6. �Color online� �a� Main panel: occupancy of level 1
�solid curves� and level 2 �dashed curves� for fermions with spin as
a function of mean level energy �=�11=�22 shifted by U12 such that
the degeneracy point corresponds to �=0 obtained from QMC cal-
culations �red, blue, and magenta online�, at different temperatures
as shown in the legends. Inset: expanded view of energy depen-
dence of dot occupancies in energy regime close to the particle-hole
symmetric point. �b� The same data plotted as �	n�−0.5� / �
t� dis-
playing 1 /T temperature dependence. Parameters: �11 / t=0.04 and
�22 / t=0.25, U12 / t=0.4. Note that the x range is different from that
of Fig. 3.
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It is natural to associate the onset of non-Fermi-liquid
behavior with dominance of the �0,2�/�2,0� pair of states, as
we have seen that in the strong-coupling limit tunneling be-
tween these states is suppressed. In support of this idea we
present in Fig. 8 the contribution of each singlet state to the
partition function. In the noninteracting case, eigenstate �1,1�
has a probability of 1/4 and �2,0� and �0,2� each has a prob-
ability of 1/16. As the interaction is increased, the probability
of �1,1� drops while that of �2,0� and �0,2� increases �and will
approach 1/2 in the infinite interaction limit�. Although there
can be no sharp transition in occupation probabilities in the
impurity models we consider, the two states �2,0� and �0,2�
become increasingly important as U12 is increased and are
much more important than the �1,1� state in the regimes
where non-Fermi-liquid behavior occurs.

Figure 9 shows the reciprocal of the imaginary part self-
energy of site 1 for a finely spaced series of interaction at the

very low temperature T= t /800. The analysis of the spinless
fermion case indicated that a weak upturn in a plot of this
nature indicated a Kondo temperature as low as 1/5000 of
the measurement temperature. The data indicate that while
for U12 / t=0.35,0.36 there is still some hint of Fermi-liquid
behavior, any Kondo scale drops extremely rapidly and by
U12 / t=0.4 any Kondo temperature is lower than 1 / �800
�5000��3�10−7t.

Figure 10�a� shows the correlation function W�
� for fer-
mions with spin. Comparing to Fig. 4�a� we see that while
the U12 / t=0.2 result shown here is rather similar to that of
U / t=0.4 shown in Fig. 4�a�, there are fundamental differ-
ences between the U12 / t=0.6 result shown here and that of
U / t=1.2 shown in Fig. 4�a�. The motivation of comparing
U=2U12 is that they produce the same Hartree shift, but one
should bear in mind that the difference in Hamiltonian will
lead to a possible difference in TK, although an evaluation of
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Eq. �12�� computed at putative quantum critical
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TK in the spinful case is lacking in the literature. The flat
range in the middle of U12 / t=0.6 and its weak temperature
dependence shows strong evidence that fluctuations between
the two density eigenstates are greatly suppressed.

The physics can more clearly be seen in Fig. 10�b�, which
shows the temperature dependence of W�
=
 /2� at the
particle-hole symmetric point. Fermi-liquid theory predicts
W�
��1 /
2; thus, W�
 /2��T2 as T→0, while if the spin
fluctuation is frozen, W�
 /2� becomes a constant at low tem-
perature. The two smallest interactions shown in Fig. 10,
U12 / t=0,0.2 �solid line with circle, red online; long dashed
line with square, black online�, clearly reveal the expected T2

behavior. The next smallest interaction, U12 / t=0.3 �dashed
line with up-pointing triangle, blue online�, reveals a down-
turn suggestive of a Fermi-liquid ground state, although the
T2 regime is not reached. However, in the stronger interac-
tions U12 / t=0.4,0.6 �dashed-dotted line with down-pointing
triangle, magenta online and dotted line with diamond, or-
ange online� traces are flat down to the lowest accessible
temperature T / t=0.000 625. Combining Figs. 7 and 10 it is
clear that a phase transition happens between U12 / t=0.3 and
U12 / t=0.4 and the system goes from a Fermi-liquid-like
state �U12�Uc

12� to a “frozen orbital” non-Fermi-liquid state
�U12�Uc

12�.
The critical interaction strength Uc

12 is numerically found
to be in the range 0.36t�Uc

12�0.39t. This is qualitatively
consistent with the analytical estimate Uc

12=0.32t. A system-
atic comparison of the Coulomb gas prediction of Uc

12 
based
on mean-field estimates of the phase shifts obtained from the
solutions of Eqs. �17� and �18�� �note that 2U12 replaces U in
this case� and QMC numerical results as a function of
�22 /�11 with �11 / t=0.04 fixed is shown in Fig. 11. We see a
qualitative agreement between the line and the dots; the dif-
ference may come from the approximations we made in the
mapping to Coulomb gas: we approximated the integration
path by a hopping between two 
-independent minima found
by minimizing the potential part of the action functional, and
the hopping path is assumed to be linear with width 
0, while

in reality the hopping path is more complicated.
Figure 12 shows a phase diagram indicating the locus of

criticality in the plane of on-site interaction strength U11 and
intersite interaction strength U12 at the particle-hole symmet-
ric point �ii=−U12−Uii /2 �i=1,2�. U11=U22 has been as-
sumed for simplicity. Above and to the left of the two lines
the physics is Fermi-liquid-like; below and to the right a
quantum critical point occurs as level energies are changed.
The regime between the two lines is a crossover region in
which we cannot determine whether it is Fermi liquid within
the temperatures studied �T / t�1 /800�. We can see that, as
U11 increases, the critical U12 needed for a non-Fermi-liquid
behavior increases.

V. CONCLUSIONS

In this paper we have studied the possibility of “quantum
criticality,” defined here as a sharp transition in level occu-
pancy as the parameters of a multiorbital quantum dot are
varied. A sharp transition requires a multistability, with more
than one locally stable solution, and thus in particular re-
quires that a symmetry or physical mechanism prevents tun-
neling between the different potential solutions. In the situa-
tion of relevance here, the physical mechanism is the
orthogonality effect arising from dissipative coupling to
leads. Our work was motivated by an interesting proposal
arising in the context of a two-dot interferometer,20 but we
observe that multistability is of broader interest in the con-
text of potential molecular devices. We presented an analysis
of the types of level-occupancy-related quantum critical
points that could arise and focused on the particular situation
introduced by Ref. 20. We used analytical arguments based
on a mapping to a Coulomb gas, as well as numerical calcu-
lations to show that while the originally studied case of spin-
less fermions exhibited only a Fermi-liquid behavior, a
model of fermions with spin could in appropriate circum-
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stances exhibit a sharp switching. The result for spinless
electrons is in agreement with previous numerical
renormalization-group studies by Refs. 15, 16, 21, and 22.
�Note that the jumps indicated in Ref. 15 arise from a
multiple-lead multiple-level situation in which the width of
one level accidentally vanishes.� The key requirements are
an intersite Coulomb interaction, which is larger than the
on-site one and the absence of pair-hopping terms in the dot
Hamiltonian. This leads to an “orthogonality” exponent
greater than the critical value of 2 and hence to localization
in macroscopic quantum tunneling sense. These essential in-
gredients may be difficult to realize in practice, although a
strong local electron-phonon coupling could lead to a po-
laronic suppression of the on-site Coulomb interaction; thus,
a system that incorporated this physics might be an appro-
priate realization. An interesting feature of our numerics is

that signatures of a Kondo effect are visible in the fermion
self-energy at temperatures orders of magnitude above the
Kondo scale.

Recently we became aware of a preprint37 reporting also
that the spinless fermion model does not exhibit quantum
criticality and proposing that quantum criticality could also
be realized in a three-lead model �which would similarly
increase the orthogonality exponent�.
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